Solving BS PDE for call option 01-10-11.nb | 1

Solving BS PDE for call option
Ol-10-11

N. T. Gladd

Initialization: Be sure the files NTGStylesheet2.nb and NTGUltilityFunctions.m is are in the same
directory as that from which this notebook was loaded. Then execute the cell immediately below by
mousing left on the cell bar to the right of that cell and then typing “shift” + “enter’. Respond “Yes” in
response to the query to evaluate initialization cells.

In[3]:= SetDirectory[NotebookDirectory[]];

(» set directory where source files are located =x)
SetOptions [EvaluationNotebook[], (* load the StyleSheet x)
StyleDefinitions -» Get["NTGStylesheet2.nb"]];

Get ["NTGUtilityFunctions.m"]; (* Load utilities package x)

Introduction

The original notebook was Transforming BS PDE into standard heat eqn 01-10-11.nb. | make some cosmetic changes.

| solve Black Scholes partial differential equation and derive the famous closed form expression for a
European style call option. This work is a revised version of BS PDE to Diffusion PDE 04-19-03.nb, and
roughly follows the treatment in the The Mathematics of Financial Derivatives, Wilmott, Howison, and
Dewynne.

The Black Scholes PDE is

af(s, 1) afs,n o *fS, 0
+rS + —§8—
at as 2 as?

= rf(S, 1)

Rather than solve this equation directly, | transform it into the heat equation, and then use the Green's
function solution of the heat equation to calculate the earlier time response to the payoff function of a
call option struck at K and expiring at T

CK, T) = max(ST— K, 0)

copyright © N T Gladd 2016

2 | Solving BS PDE for call option 01-10-11.nb

Calculation
Define the BS PDE
2
ns= | W[1] = -rC[S, t] + D[C[S, t], t] + rSD[C[S, t], S] + G—SZD[C[S, t], {S, 2}]
2
ous= | —rC[S, t] +C@®V S, t] +rsC®O (S, £] + 152 o? €29 [s, t]
2

The transformation into the heat equation form will involve changes of both the independent variables S
and t, and the dependent variable C(S, t).

Introduce a replacement rule for the general form of the new independent variables.

wer= | W[2] = w[1] /. C > ((C[x[#1], c[#2]]) &)

outl6]= -rC[X[S], T[t]] +T[t] C®V [x[S], T[t]] +rSx[S] C®® [x[S], T[t]] +

g2 (x7[S] €™ [x[S], t[t]] +x [S]*C®® [x[S], t[t]])
2

Introduce explicit expressions for the new independent variables

S
In[7]:= def[x] = X = Log[—];
K
o2
def[t] = t == —(T -t);
2

Using these expressions as rules

2

mep= | W[3] = w[2] /. {x - ((Log[%]] &), T > [(o? (T —n)] &]} // Expand

outg)= —r‘C[Log[é], 1 (~t+T) ?] -
K 2

Note that this choice of time variable converts the PDE from a forward equation to a backward equation,
as appropriate for options. The Black-Scholes PDE describes a diffusive process that starts at a future

expiration time with a known terminal payoff. That payoff is then propagated backward in time with the

solution of the PDE describing the present fair value of the payoff.

copyright © N T Gladd 2016

Solving BS PDE for call option 01-10-11.nb | 3

In[10]:= w[4] =
w[3] /. {Simplify[Solve[def[x], S][1, 1], x € Reals] , Solve[def[t], t][1, 1T} //
ExpandAll // PowerExpand
1 1 1
out[10)= -rCix, t] -—02C%Y [x, t] +rCL® [x, 1] - = 2CL® [x, t] + =02 C%9 [x, 1]
2 2 2
A convenience substitution results in a simplified PDE with a single parameter.
In[11]:= def[k] = k == Zr‘/o2
2r
out[11]= K= —
02
2= | W[5] = w[4] /. Solve[def[k], r][1, 1] // Factor // (#[-1]) &
ouriz: | kC[x, T] +C@®Y [x, t] +CHP [x, t] -kC®? [x, t] -C®9 [x, €]
The next step is to reexpress the dependent variable according to
Clx, 7) = e +*B7C(x, 1)
where the two parameters a and (8 are to be specified later
wiz= | W[6] = W[5] /. C » ((Exp[a#l + gu2] c[#l, #2]) &) // Factor // (®[-1]) &
Out[13]= -ke[x, t] —aC[x, t] +kaC[x, T] +a?C[X, T] -BC[X, T] -
c@®Vix, t] -cTP[x, t] +kc®? [x, t] +2ac®? [x, t] +C®? [x, T]
The standard heat equation is homogeneous (doesn't have a term in C(x, 1)) and also purely diffusive
(does not a have term in ﬂca%l). | consider the values of a and g that will cancel these two terms.
wia= | W[7] = {Coefficient[w[6], C[Xx, t]] = @, Coefficient[w[6], € *? [x, t]] = @}
out[14]= {—k—oc+kot+oz2—/3::0,—1+k+20<::0}
Solve for a and S.
nisi= | w[8] = Solve[w[7], {a, B}][[1]] // Factor
1-k 1
out[15]= {Ote—, B - -— <1+k)2}
2 4

On substituting these values into the transformed PDE

In[16]:=

Out[16]=

w[9] = -w[6] =0 /. w[8] // Expand

c@®Vx, t]-c®%[x, t] =0

copyright © N T Gladd 2016

4 | Solving BS PDE for call option 01-10-11.nb

which is the standard form for the heat equation.

2 Solving the heat equation and deriving the classic Black-

Scholes formula

As detailed in the notebook Green's function solution of Heat Equation 01-11-11.nb, the Greens's
function solution of

0G(x, T3x9, Tg) 9 G(x, T3x0, To)
= _ = = 5k - xS (T — 7))
ot Ox?

1 =0

e 4t
2ynt

and the response to an initial condition C(xp) is given by

G(x, T5x9, T9) =

Cix, 1) = f Glx, 75 %0, 7o) Clxg) dxy

For the call option problem at hand, | construct the appropriate initial condition C(xo) and then carry out
this integration.

The payoff for the European call option is

min= | w2[1] = C[S, T] == Max[S - K, 0]

out[17]= C[S, T] =Max[0, -K+S]

This must be expressed in terms of the new variables.

e | W2[2] = w2[1] /. C -> ((C[x[#1], T[#2]]) &) /.

{x - ((Log[%]) &), r > [[%2 (T -n)] &]} // Expand

S
out18}= c[Log[E], 0| = Max[@, -K+S]

In[19]:= w2[3] =
w2[2] /. {Simplify[Solve[def[x], S][1, 1], x € Reals], Solve[def[z], t][1, 11} //
PowerExpand

ourig= | C[X, @] = Max [0, -K+e*K]

Proceeding with the dependent variable transformation

copyright © N T Gladd 2016

In[20]:=

Out[20]=

In[21]:=

Out[21]=

In[22]:=

Out[22]=

In[23]:=

Out[23]=

In[24]:=

Out[24]=

In[25]

Out[25]=

Solving BS PDE for call option 01-10-11.nb | 5

w2[4] = w2[3] /.C » ((Exp[a#l + B#2] C[#1, #2]) &)

e C[x, 0] = Max[0, -K+e*K]

w2[5] = Solve[w2[4], C[x, ©]]1[[1, 1]] /. Rule - Equal

C[X, 0] = e *Max [0, -K+ e K]

With this initial condition, | evaluate the Green's function integral.

| use Int instead of the Mathematica Integrate to suppress the integration algorithms until some manipula
tions can be performed.

w3[1] = Int[c[xe, O]], 1x@, -o, o}] /.

2Vt 4

(w2[5] /. x > x@ /. Equal - Rule)

(x-x8)2
0 o- :

Int||e”

Max [@, -K+eX°K}]/ (2\/7\/?) {x0, ~o, o} |

Notice that the integrand is zero unless @ > 1, or y > 0. | use some pattern matching rules to introduce
these simplifications of the general integral

w3[2] = w3[1] /. Max[@, a_] » a /. {x0, -, ©} » {x0, 0, ©} // ExpandAll

X2 xx0 x02 x2 xx0 x02
-X0 O~ —+ ——— — X0-X0 o— —+ —-"—
4t T : K e 4 2: a: K

Int[- + , (x0, 0, @} |

2+ VT 2/n Vo

At this point | invoke the Mathematica integration algorithms and simplify the result for 7 is real and
positive.

w3[3] = w3[2] /. Int -» Integrate //
Simplify[#, Assumptions - {t € Reals, t > 0}] & // PowerExpand

X -2 (—1+o<) T

2/t

ot(—X+(—2+O()t)K [X*ZO('C}

2+t

—e
2

]

e (1 + Erf|

+e2at [2+ Erfc

|

In the option theoretic literature the cumulative standard normal distribution N is preferred over Erf.
Note that //. has to be used in order that the Erfc is transformed into Erf and then Erf is transformed into
N

w3[4] = w3[3] //. {Erfc[x_] » 1 - Erf[x], Erf[x_] - ZN[’\/TX] - 1} // ExpandAll

_(eonwathN[X _\/70(\/?]+exfxa+tfzat+athN[X +\/7\/?—ﬁozﬁ}
VTNT VT T

copyright © N T Gladd 2016

6 | Solving BS PDE for call option 01-10-11.nb

where

1 [
Nx) = f dt n(® n@) = e

N

So | arrive at an explicit expression for the call option in terms of known functions

In[26]:= w3[5] = C[X, t] = w3[4]
Out[26]= C[x, t] =
X X
et [T aT] s exee2emd e g[S T VT VT avT]
V2 it V2 vt

This result needs to be expressed in terms of the original variables.

In[27]:= w3[6] = (#Exp[ax + Bt]) & /@ w3[5] // Expand
out[27]= eXBrex, t] =
X X
e BT N[N2 aT] s et nR e k[T AT -7 aVT]
V2 o Va2 o

Introduce the explicit values for a and 8

nzer= | w3[7] = w3[6] /. e*BT¢[x, t] » C[x, t] /. w[8] // ExpandAll
Out[28]= Cix, t] ::—e’ktKN{ X \/? k\/_}+eXKN[#—\/?+\/?\/?+k\/?]
VT J2oVz VZ VT V2 vz

Transform back to the original independent variables

In[29]:= w3[8] =
w3[7] /. Solve[def[k], k][1, 1] /. Solve[def[x], x][1, 1] /. Solve[def[t], t]l[l, 1]

SRR Wi e PO S LA

out[29]= C[Log{ﬁ] l (t T)
K2 - (t-T) o

NS W s}

-(t-T) o?

Further manipulation is required to obtain the familiar form

In[30]:= w3[9] = C[S, t] == Simplify[w3[8][2] , {o € Reals, o> 0}]

ouor | C[S, t] = -e" T KN[|-(t-T) (2r-o?) +2Log|

=~ |wn

})/(zmo)p
SN[[-(t-T) (2r+0?) +2Log[§}]/(2mo>}

copyright © N T Gladd 2016

Solving BS PDE for call option 01-10-11.nb

| define the famous dq term

In[31]:= def[dl] = di1

| 7

= w3[91[[2,2]] /. a_.N[b_] » b

out[31]= dl = (f (t7T> (2r‘+oz> +2Log[§}

;]/ (2T o

and solve for Log| %]

In[32]:= w3[10] =

S
= Solve[def[d1], Log[;]] [[1, 1]]

ou | Log[>] 5 = (2rt-2rT+2d1V/-t+T o+ to?-To?
K 2
Substitute this result in the solution
In[33]:= w3[11] = w3[9] /. w3[10]

2rt-2rT+2d1y/-t+T o+to®-To?- (t-T) (2r-o?)
Out[33]= C[S, t] = -e" D KN[

]+
2V -t+T o
. [Zr‘t—Zr‘T+2d1\/—t+T o+to?-To?- (t-T) (2r‘+oz)}
N
2/-t+T o
Simplify
In[34]:= w3[12] = Simplify /e w3[11]

Out[34]=

C[S, t] =SN[d1] -e" " T KN[d1-V/-t+T o

and, at last, the classical Black Scholes formula for a European call option is obtained.

In another notebook this formula is derived by taking the expectation of the terminal payoff under a risk-
neutral probability measure.

copyright © N T Gladd 2016

